CESAR: Overview of Deep Dive

Andrew Siegel
Anshu Dubey
CESAR Challenge: Predict Pellet-by-Pellet Power Densities and Nuclide Inventories for the Full Life of Reactor Fuel (~5 years)

CESAR physics

- Computational Fluid Dynamics (Conjugate Heat Transfer)
- Neutron Transport
- Fully Coupled CFD/Transport

- CESAR focuses on nuclear reactor flows and physics (neutron transport) calculations
 - Accurate simulations have always been an integral part of design, licensing, and optimization of nuclear reactors
 - Innovative reactor designs require far more physics fidelity than current methods provide
CESAR physics

- CESAR focuses on **nuclear reactor** flows and physics (neutron transport) calculations
 - Accurate simulations have always been an integral part of design, licensing, and optimization of nuclear reactors
 - Innovative reactor designs require far more physics fidelity than current methods provide
- However, many of the co-design issues are of more general relevance to
 - **Incompressible CFD**
 - **Neutral particle transport**

Three codes are focus of CESAR research

- **Computational Fluid Dynamics**
- **Neutron Transport** (approach 1)
- **Neutron Transport** (approach 2)

Three codes are focus of CESAR research

- **Computational Fluid Dynamics**
- **Neutron Transport** (approach 1)
- **Neutron Transport** (approach 2)

Three codes are focus of CESAR research

- **Incompressible Navier-Stokes**
- **Boltzmann**
- **Stochastic (Monte Carlo)**

Three codes are focus of CESAR research

- **Incompressible Navier-Stokes**
- **Boltzmann**
- **Stochastic (Monte Carlo)**

- **Spectral Elements**
- **Method of Characteristics**
- **Data and Domain Decomposition**
Three codes are focus of CESAR research

- Computational Fluid Dynamics
 - Incompressible Navier-Stokes
 - Spectral Elements
 - Nek
- Neutron Transport (approach 1)
 - Boltzmann
 - Method of Characteristics
 - UNIC
- Neutron Transport (approach 2)
 - Stochastic (Monte Carlo)
 - Data and Domain Decomposition
 - OpenMC
 - Proxy Apps
 - High FLOP/load ratios
 - Nearest neighbor
 - Bulk synchronous
 - Low memory per node required for scalability
 - Global AllReduce latency key
 - Load dominated
 - Branch heavy
 - Highly parallelizable in particle space
 - Poor locality in x-section and tally space
 - Low FLOP/s rate
 - Performance hot spot

Categories of Proxy-apps

- **Kernels**
 - A standalone faithful representation of a performance critical component whose behavior does not qualitatively change when interoperating with other components

- **Micro-apps**
 - Components that cannot have a meaningful standalone representation in a minimal combination with other components

- **Mini-apps**
 - Reduced instantiation of application configurations that exercise the interoperability

Organization of Proxy Apps

- Each class of proxy-apps has its own webpage
 - Download
 - Quick start guides (README files)
 - Instructions to build and run
 - Parameters that affect the run
 - Verification data
 - Example configuration
 - Links for
 - Publications related to the whole application
 - Technical reports of findings and acquired wisdom
 - Discussion forum

http://cesar.mcs.anl.gov/content/software

Possible Limitations

- **Proxy-apps** inherently have the implementation bias built into them
 - Data structures
 - Control flow
 - Communication pattern

- Some way to represent the basic computation without the bias would provide more insight

- Ample verification studies needed

- Provision for embedding algorithmic innovations for exascale in the proxy-apps
Four CESAR deep dive talks

- Monte Carlo neutronics (Siegel)
- Incompressible CFD (Elia Merzari)
- Deterministic Transport (Micheal Smith)
- Neutronics/CFD coupling (Tim Tautges)