
NEKBONE: Thermal Hydraulics

mini-application

Nekbone Release 3.1

October 10, 2013

Contents

1 Introduction to Nekbone 3

2 Getting Started 4

2.1 Setup . 4

2.2 Running A First Example 4

3 Parameters in Nekbone 6

3.1 SIZE File . 6

3.1.1 Impact of Parameters 7

3.2 data.rea File . 7

4 The Nekbone Code: Default Scheme 10

4.1 The Default Setup 10

5 Details on Running and Editing Nekbone Examples 13

5.1 Editing the Nekbone Test Examples 13

5.2 Compiling Nekbone 14

5.3 Understanding the Output 16

5.3.1 Element and Processor Distribution 16

5.3.2 Platform timer Results 16

5.3.3 Conjugate Gradient & Flop Counts 17

5.3.4 Bandwidth Test 18

6 Overview of Included Nekbone Examples 19

6.1 The basic nekbone example, A template 19

6.2 The simplest example, example2 19

6.3 The more complex example, example3 19

2 Chapter 0 — CONTENTS

6.4 The Multigrid Preconditioner Example 20

6.5 Special Platform Performance Example, nek comm . 20

6.6 Load Imbalance Example, nekdlay 20

7 Nekbone & Nek5000 22

7.1 How Nekbone Represents Nek5000 22

7.2 MPI Communication within Nekbone 22

7.3 Optimization Opportunities 23

Chapter 1. Introduction to Nekbone

NEKBONE Release 3.1

Nekbone captures the basic structure and user interface of the ex-
tensive Nek5000 software. Nek5000 is a high order, incompressible
Navier-Stokes solver based on the spectral element method. It has
a wide range of applications and intricate customizations available
to users. Nekbone, on the other hand, solves a Helmholtz equation
in a box, using the spectral element method. It is pared down to
include only the necessary features to compile, run, and solve the
applications found in the test/ directory. Since almost all prac-
tical applications are in the three dimensional space, the solver is
set to work with three dimensional geometries as default. Nekbone
solves a standard Poisson equation using a conjugate gradient it-
eration with a simple or spectral element multigrid preconditioner
on a block or linear geometry (parameters are set within the test
directory of the simulation). Nekbone exposes the principal compu-
tational kernel to reveal the essential elements of the algorithmic-
architectural coupling that is pertinent to Nek5000.

More information about nekbone can be found on the CESAR web-
site:
https://cesar.mcs.anl.gov/content/software/thermal hydraulics
or by contacting one of the developers.

Paul Fischer : fischer@mcs.anl.gov

Katherine Heisey: heisey@mcs.anl.gov

This document contains the quick start guide, an overview of the
more detailed parameters available to the user, a more detailed basis
of the representation of nekbone and Nek5000, and an overview of
the provided examples

Chapter 2. Getting Started

Nekbone requires the use of a F77 and C compiler. The currently
tested and supported compilers are IBM, Intel, PGI Portland, and
GNU gfortran, although others may be used.

2.1 Setup

For the latest version of the nekbone code, please visit
https://cesar.mcs.anl.gov/content/software/thermal hydraulics

After downloading the nekbone tarball, it can be unzipped and ex-
tracted in one step, if using the linux-package, GNU tar commands:
tar -zxvf nekbone-3.1.tgz

This will create a nekbone-3.1directory populated with the source
and test example directories.

Nekbone’s test directory(nekbone-3.1/test) includes the example
cases for running Nekbone..

Nekbone’s source code is found in nekbone-3.1/src/.

All nekbone test or example cases must have a SIZE file and a
data.rea file, unless running a test with only the communication/platform
profiler. (example in nekbone-3.1/test/nek comm/) Every test is
compiled and linked with a makenek script, found in each example
in nekbone-3.1/test/. This script performs a series of checks on the
setup environment and compiler flags before compiling the source
code using, makefile.template to create the makefile.

For more details on these examples and how to modify them, see
section 5.1

2.2 Running A First Example

Change to the main example directory:
cd nekbone-3.1/test/example1

Check that the makenek script points to the correct source directory
and edit it, if needed. The default is set to:
SOURCE ROOT=′$HOME/nekbone-3.1/src′

2.2 Running A First Example 5

Check that the compiler is set as desired. The default compiler is set
to a mpi wrapper for F77 and C. If needed, change the F77 and CC

parameters in the makenek script found in nekbone-3.1/test/example1/

Compile the code using the makenek script to build and link:
./makenek ex1 More details on the makenek script and how to
modify it are found in Section 5.2.

A successful compilation of the code should result with this message
printed to the screen:

###

Compilation successful!

###

and a nekbone executable in the test/example1/ directory.

To run the case in serial:Running serial
./nekbone ex1

To run the case in parallel the user can use the script provided,Running in Parallel
nekpmpi. This script will redirect the stdout to a logfile named
according to the example case and the number of processors ran on.
The user must supply the name of the example and the number of
processors to use, i.e:
./nekpmpi ex1 4

would run ex1 on 4 processors.

∗∗ NOTE: to run the application in parallel, one must be sure that
the parameters set in the SIZE file accommodate the desired run
parameters(specifically, lp and lelt). See section 3.1 for more details
on these parameters.

To interpret the output, please see Section 5.3

To clean up the source and test directory, removing the .o files, use:Cleaning up
./makenek clean;

Chapter 3. Parameters in Nekbone

To run an application, much like the standard Nek5000 examples,
the user must run their experimental cases in a separate directory
from where the code is stored. Each case ran with the nekbone code
must have a SIZE file and a data.rea file in the running directory.

3.1 SIZE File

The SIZE file contains some basic parameters needed to create the
mesh and control the parameter space. Below is a brief description
of the parameters found in SIZE and how they can be changed to
fit the user’s needs. Most of the SIZE parameters are representa-
tive of the local processor counts as opposed to a global element
representation.

this is the dimension of the example. The code is written to workldim

with three dimensions. Changing this parameter would produce
unexpected results and is not recommended.

without being recompiled, this is the maximum polynomial degreelx1, ly1, lz1
set as N = lx1 − 1, where N is the polynomial degree. It can be
any number, even or odd, that is greater than or equal to two. On
some machine platforms, an advantage has been seen when using
even numbers. However, on others there has been no evidence that
either should be preferred. The parameters lx1, ly1, and lz1 should
always be equal.

the maximum number of processors that can be used without re-lp

compiling the code. This parameter should be changed to reflect
the MAXIMUM number of processors the user plans to run with.

the maximum number of elements per processor that can be ranlelt

without recompiling the code. This should reflect the MAXIMUM
number of elements per processor.

the total number of elements in the run. This is set to be (lp× lelt)lelg

and should not be changed. The code is currently set to find the best
configuration across processors using this total number of elements
in each dimension space, or can be configured by the user in the
data.rea file.

3.2 data.rea File 7

this parameter is used in the include parameter files and should beldimt

kept as is.

is the common block containing some of the most used variables incommon/dimn/
the code. Most are initialized in the beginning of the code and are
equated to their counterparts named similarly. (i.e., ndim = ldim;
nx1 = lx1; ect..) In general, these are the case specific parameters,
not the bounding sizes.

3.1.1 Impact of Parameters

The parameters set in the SIZE file define the problem space to
be evaluated. As stated above, lelt determines the number of total
elements(per proc.) in the geometry where as lx1, ly1, lz1 define
the polynomial order. As the figure 3.1 shows the polynomial or-
der really enriches the geometry by increasing the total number of
gridpoints.

Figure 3.1: The role of lx1. The right geometry has no lx1 defined
whereas the left has lx1, ly1, lz1 set to 7.

3.2 data.rea File

Along with the SIZE file, the data.rea file provides the user with a
few parameters to be changed at runtime. This will allow users to
alter certain variables without having to recompile the code.
EVERY EXAMPLE must have a data.rea file with these variables
set:

This is the logical switch used to determine a brick geometry or aifbrick

linear block of elements. Setting .true. = ifbrick will allow the
code to determine the ideal 3-D configuration of nelt elements and
np processors. Setting .false. = ifbrick will trigger the linear

8 Chapter 3 — Parameters in Nekbone

geometry. The linear geometry yields itself to an optimal commu-
nication pattern since each element only needs to communicate to
2 other elements on either side of it. (Excluding the ends, which
would only have one neighbor) The brick configuration has a more
realistic communication pattern where the interior elements need to
communicate with 8 neighbors. Since the element counts are con-
figured on a per processor basis, certain values of nelt will produce
a linear geometry, despite the ifbrick flag being set to true. Prime
numbers or geometries that don’t lend to a X-by-Y-by-Z decompo-
sition will default to the linear bring of NELT-by-1-by-1.

Figure 3.2: When .ifbrick. parameter is set to false a linear
geometry is created (left) and when set to true, a 3-D brick of
elements is created(right)

These three values are read in by nekbone and will control the rangeiel0, ielN, step

of elements to be evaluated, per processor. Nekbone will run a bat-
tery of tests starting with iel0 through ielN elements per process,
jumping by step. Thus, setting iel0 to 1, ielN to lelt, and step to 1
will loop through tests with 1 element per processor to lelt elements
per processor, as set in the SIZE file. If desiring a test that only runs
a single Poisson solve on a specific element count, set iel0 = ielN .
These values can be changed at runtime and do not require nekbone
to be recompiled as long as ielN <= lelt. It is important to note
that step is the added to the number of elements, per process, and
will terminate tests once step+number of elements > ielN . Thus,
the last test ran may not be of size ielN , but of a smaller element
count based on the addition of step to the previous count.

These parameters are used to vary the polynomial order of a run.nx0, nxN, step

Currently, these are defaulted to be the lx1 value set in the SIZE
file. These parameters will be read from the data.rea file and control
the range of polynomial order. The polynomial order is set to be

3.2 data.rea File 9

nx1− 1 where nx1 is set according to nx0, nxN , and step. Setting
nx0 = 2 and nxN = lx1 will run a series of tests from 2 through
lx1 giving the full scope of polynomial ordering up to the maxi-
mum value set in SIZE. The default setup sets nx0 = nxN = lx1,
therefore only running with a constant nx1 value equal to what is
set in the SIZE file. Varying the polynomial order will change the
computational complexity by increasing the number of grid points
per element. Typical values span anywhere from 4 to 14, although
much larger values have been explored. When using the multigrid
preconditioner, nx0 must be at least 4. Anything smaller will result
in an error message and overriding the starting polynomial value to
4.

When ifbrick is set to true, the user can also control the distri-npx, npy, npz

bution of processors in the simulation. npx, npy, npz represent the
decomposition of the processors in the respective Cartesian coordi-
nates. If npx× npy × npz does not equal the number of processors
being used, np, nekbone will find the correct configuration of np
processors. Thus, setting npx, npy, npz to zero will result in allow-
ing nekbone to calculate the processor decomposition.

Similarly, the user can set the local element distribution using themx,my,mz

data.rea parameters, mx,my,mz. If mx×my×mz does not equal
the nelt for the current test, nekbone will calculate the best cubic
decomposition for the user.
NOTE: When running test with varying nelt values (as set by pa-
rameters iel0, ielN, step in data.rea) the mx,my,mz decomposition
will only be applicable for the first test. The proceeding tests will
be configured by nekbone’s decomposition routines.

Chapter 4. The Nekbone Code: Default
Scheme

Nekbone solves the Helmholtz equation in a box using the spectral
element method. It partitions the computational domain into high-
order quadrilateral elements. Based on the number of elements,
number of processors, and the parameters of a test run, Nekbone
creates a decomposition that is either a 1-dimensional array of 3D
elements, or a 3-dimensional box of 3D elements. It evaluates a
Poisson equation on every time step iteration and provides an esti-
mate of realizable flops, as well as inter node latency and bandwidth
measures.

4.1 The Default Setup

In order to ensure Dirichlet boundary conditions, a mask is appliedBoundary
Conditions in each conjugate gradient iteration. For simplicity this mask zeros

out all faces of the global geometry, enforcing Dirichlet conditions
everywhere. This maintains a solvable code while not complicating
it with an extravagant masking mechanism.

Set in the makenek script, nekbone can be ran with a multigirdPreconditioning
preconditioning step or a simple application of the identity matrix.
The multigrid preconditioner is an iterative method based on the
idea that a coarser mesh representation will expose highly oscilla-
tory components of the error that would otherwise seem insignifi-
cant on the original mesh. It has two fundamental aspects, the local
relaxation (or smoother) and the coarse-grid correction. These are
applied in a recursive fashion to achieve a multilevel preconditioner.
Nekbone is set to have 2 coarsening steps, arriving at the coarsest
level of mesh representation, 1 grid point per spectral element. At
this level, there is a coarse grid correction calculated and then ap-
plied to the coarse solution. This correction is then propagated
up through the mesh representations until it is finally applied to
the original, fine grid mesh. The multigrid precondition speeds up
convergence of the conjugate iteration scheme. It also more closely
represents the methods that are used in current application codes.
Obviously, this comes at an increase in memory and communica-
tion overhead, as well as an increased algorithmic complexity to the

4.1 The Default Setup 11

mini-application as a whole. To help curb this added complexity,
we have applied an elementary coarse-grid solution as opposed to
a more sophisticated scheme. Nekbone still upholds the option of
running without this preconditioning step and instead implement-
ing the original identity matrix as was done in previous nekbone
releases. The application of the Identity matrix to the initial so-
lution, otherwise known as a copy of the initial guess. Using the
multigrid precondition rapidly increases convergence and is a re-
alistic method used by actual, full application codes; however, it
will require more memory and communication overhead. To run
with the multigrid turned on, simply add MGRID to the PPLIST=
variables set in the makenek script of the example directory.

The default application of this code has the capability to run aPlatform Timing
Tests battery of tests useful in profiling the platform and basic commu-

nication structure of the code. The first set of tests are called in
driver.f by:

call platform timer(iverbose)

The variable, iverbose, controls how much information is sent to
standard output and can be flagged with a 0, for not verbose, or
a 1 for verbose. These tests include ping-pong tests and all-reduce
tests to give relevant information about the platform being ran on.
Currently, this call is commented out to allow for short test runs
with the main example case nekbone-3.1/test/example1. How-
ever, the included example nekbone-3.1/test/nek com is set to
run only the platform timer and exits after reporting the commu-
nication data.

After the platform timing tests, the Poisson equation evaluationsPoisson Evaluation
begin. An iterative conjugate gradient solve, with a precondioning
step, is performed on an increasing number of elements per process
from iel0 to ielN (jumping by step), set in the data.rea file. (See
3.2) The principle kernel of the code is the w = A ∗ p routine
with has many opportunities for optimization. Essentially, the bulk
of this work is done through matrix-vector products. These w =
A ∗ p evaluations are done on the local elements on each processor.
To update across all processors, a nearest neighbor communication
must be executed. The conjugate gradient evaluation iterates for a
determined number of iterations, niter, set in driver.f.

Inside the conjugate solver, the flops are counted and timed forCounting FLOPS
further analysis as the problem size grows. This counter is output
to the logfile for each problem size as:

12 Chapter 4 — The Nekbone Code: Default Scheme

nelt= nelt, np= np, nx1= nx1, elements=nelt*np

Tot MFlops= mflops*np , MFlops = mflops

Setup Flop= flops a , Solver Flop= flop cg

Solve Time= time

where,for MPI processes running on rank 0,
nelt is the number of elements
np is the number of processors
nx1 is the value of nx1, polynomial order
mflops is the total number of flops divide by time spent in solver
flops a is the operations spent in the Ax=b routines
flops cg is the operation count spend in the conjugate gradient
time is the total time spend in the solver

The average number of flops per test run is output at the end of the
final test.

Avg MFlops = avgFlop

This is the total flops averaged over the number of individual tests
ran in a single submission.

Finally, the bandwidth of processors np can be tested with a callCalculating
Bandwidth to:

call xfer(np,cr h)

Here an array of increasing size is exchanged and timed across pro-
cessors, averaged over 50 exchanges. This gives an idea of bisection
bandwidth capacity of a range of data sizes. It is essentially testing
the rate of message transfers with increasing sized messages, over
the total number of processors. The default setting has this call
commented out to speed up the overall time spent in any nekbone
case.

Chapter 5. Details on Running and Editing
Nekbone Examples

Nekbone’s test directory(nekbone-3.1/test) includes the example
cases for running nekbone. Most of these examples can be edited
and customized to test various aspects of the application.

5.1 Editing the Nekbone Test Examples

These examples will run a battery of problems in a single submis-Number of elements
sion. Each problem increases in element count by the total number
of processors being ran, times step, the variable set to control the
incremental increase of each test iteration. Thus, the problem sizes
can range from one element per process to lelt elements per pro-
cess, where lelt is set in the SIZE file. This can be changed to range
from any beginning and ending number of elements per processor
by changing the parameters iel0 and ielN in the data.rea file. Sim-
ilarly, step can be set to control the jump of elements per process
by setting it to 1 or any integer < ielN . As described in 3.2, these
parameters control the range of tests to be ran as iel0 though ielN

as long as iel0 > 0 and ielN <= lelt. The default sets iel0 to 1
and ielN to lelt, thus running a total of lelt tests, increasing by one
element per test.

The default setup of nekbone runs with a set polynomial order equalVarying Polynomial
Order to lx1 as set in the SIZE file (see Section 3.1). This can be config-

ured to run a range of increasing polynomial orders by setting the
parameters nx0 >= 2 and nxN <= lx1, and editing step to the
desired increment. See 3.2 for more details.

The default variables, npx, npy, npz are set allow nekbone to findSpecifying the
processor

decomposition
the best decomposition of the number of processors, np. This can
be edited in the data.rea file, to establish a specific arrangement of
the processors. However, if the user provided decomposition does
not add up to the total number of processors, nekbone will find
the best 3D distribution. This allow the user to create a processor
breakdown that reflects a 2D processor map, instead of the 3D one
set with ifbrick = true or the linear one set with ifbrick = false.

14 Chapter 5 — Details on Running and Editing Nekbone Examples

For example, 8 processors would usually be decomposed into a 2-
by-2-by-2 mapping, but the user could change the data.rea file to
create a 4-by-2-by-1 map.

Similar to the processor distribution, the default variables,mx,my,mzSpecifying the local
element decomposition are set allow nekbone to find the best decomposition of the elements

per process, nelt. This can be edited in the data.rea file, to estab-
lish a specific arrangement of the local elements. However, if the
user provided decomposition does not add up to the total nelt, nek-
bone will find the best 3D distribution. Like the processor mapping
above, these parameters allow the user some flexibility to create
element structures that are not just the 1D or 3D decomposition.
However, since the parameters iel0, ielN allow for a varying number
of element counts to be evaluated in a single submission, the user
provided, local element decomposition will only be read in on the
first run, iel0 elements per process. For test ran after, mx,my,mz

will no longer equal nelt and nekbone will find the decomposition.

In the current set up, the name of the example is not importantNaming Examples
and is not used. In future revisions, this might become integral to
the code. However, as a basic set up, we have used the SIZE and
data.rea parameters to specify the exact specifications. No mesh
data or input data is read in besides these two files.

Using the logical variable, ifbrick, found in data.rea, the user canGeometry
control whether the geometry is set to be a brick or just a single
line of elements. ifbrick in this example is set to false, resulting
a the optimal communication pattern that a linear geometry lends
itself to.

In any single test run, the total degrees of freedom are
dof = np× nx13 × nelt ≤ lp× lx13 × lelt.

The conjugate gradient solver is set to run for a maximum numbernumber of CG
iterations of iterations, niter. niter is set in src/drive.f and is can be in-

creased as the degrees of freedom increase in the example. A lower
niter value may result in non-converging results simply due not be-
ing allowed to iterate in the solver long enough for the degrees of
freedom to be resolved.

5.2 Compiling Nekbone

Nekbone is compiled by running the provided script, makenek. Mak-
enek allows the user to set the compiler, any compiler flags, opti-
mization flags, and other preprocessing flags.

5.2 Compiling Nekbone 15

One of the important variables that is defined in the script is theSOURCE ROOT
source directory path, SOURCE ROOT=. This should be set to the
path to the source code. Since the tests are all ran from their own
directory, this path can be locally defined as
../../src

or more globably as the path from the user’s HOME/ directory. As
default, the path is set to
$HOME/nekbone-3.1/src

which assumes that the tarball was downloaded and unzipped in
the HOME/ directory.

F77 and CC are the compilers to be used. Nekbone has been testedF77 and CC
with GNU’s gfortran, PGI Portland, INTEL and a few others. Both
serial and parallel version have been used. The standard, mpif77
and mpicc are default in the test directory.

PPLIST sets pre-defined pre-processor symbols that are used withinPPLIST
nekbone. The current options are:

• BG - Currently, setting this variable to BG will enable some
optimizations specific to Blue Gene P platforms.

• NEKCOMM - When running the communication-only exam-
ple, test/nek comm, PPLIST must include NEKCOMM to
compile the correct files.

• NEKDLAY - To compile the correct files for the nek delay
example, test/nek delay. This cannot be combined with
NEKCOMM.

• MGRID - to turn on and compile the multigrid preconditioner.

• ? - this will give a list of acceptable symbols nekbone can be
configured with

Uncommenting this variable sets IFMPI to false. As the name im-IFMPI
plies, this would turn off MPI communication within nekbone and
enable a serial run. This should be toggled to false when using a
serial compiler or when wanting to run without MPI enabled.

The G variable is for any compiler flags the user wants to include. AG
common setting is compiling with debugging turned on by setting
G = ”-g”. For PGI Portland serial compilers, adding -Ktrap=fp
will cause the test to exit when encountering any NaN values.

General optimization flags can be specified by setting theOptimization Flags

16 Chapter 5 — Details on Running and Editing Nekbone Examples

OPT FLAGS STD variable as desired. This will set the optimiza-
tion level for a majority of the source files. If this is not specified,
the code is compiled with −O2 and with −O0 when in debugging
mode.

OPT FLAGS MAG is used to set the highest level of optimization,
which is used on some of the of the more intricate files. If this
variable is undefined, these files with be compiled with −O3 and
−O0 when in debugging mode.

Once the variables are defined as desired, running makenek in the
test example directory:
./makenek name of test

will compile and link the code to be ran. See section 2 for more de-
tails on running the example provided in nekbone-3.1/test/example.

5.3 Understanding the Output

5.3.1 Element and Processor Distribution

According to the logical, ifbrick, set in data.rea, nekbone will dis-
tribute the local elements in a linear or brick geometry. This element
distribution will be output to stdout as:
Processor Distribution: npx,npy,npz

Element Distribution: nelx,nely,nelz

Local Element Distribution: mx,my,mz

where the processor configuration will reflect the total processor dis-
tribution, the element distribution will be the total element counts
in the x,y,z direction, and the local element counts will be the el-
ement configuration on each processor. Thus, the total elements
in each direction will equal the processor count multiplied by the
local element count. (npx×mx) This distribution can be edited by
parameters in the data.rea file. See 3.2 and 3.2 for more details.

5.3.2 Platform timer Results

When the platform timer(ivrb) is turned on, the result of all plat-
form tests will be at the beginning of the logfile. This includes
all reduce times, varying times of different matrix- matrix product
routines, and ping pong tests done on the platform ran.

The first set of data in the platform timer results is the mxm routine
tests. Starting with a 1-by-1 matrix and increasing to a 16-by-16
matrix, the various matrix-matrix routines are tested based on flops,
speed, and peak harmonic.

5.3 Understanding the Output 17

Labeled with ’gop’, the all reduce test results are reported next.
Starting with message sizes of 1 and increasing to 100,000 words,
the all reduce times are reported as
np nwds tmgs tpwd "gop"

where:
np is the number of processors
nwds is the number of words in the message
tmgs is the total time to communicate this message across proces-
sors
tpwd is the time per word.

Similar results are reported with ”gp2” which is a Nek written
all reduce implementation using a fan-in/fan-out method.

Finally the ping-pong test results are output with the label ”pg”.
These tests time how long it takes for a message to travel between
two nodes. When the node count is over 256, the sampling of nodes
is spread out among the remaining nodes to adequately span the
communication topology while only running 512 total ping pong
tests.

The stdout for the ping-pong tests is:
nodeb np nloop nwds tmgs tpwd

where:
nodeb is the node number that node 0 is communicating with
np is the total number of processors
nloop is the number of iterations the ping-pong test used
nwds is the number of words in the message sent between nodes
tmgs is the total message time
tpwd is the time per word

After each node0 -¿ nodeX pair finishes its ping pong test, an ap-
proximate alpha and beta value is reported.

5.3.3 Conjugate Gradient & Flop Counts

Nekbone writes to stdout the results of each conjugate gradient
sequence on increasing problem size.

At the beginning of each sequence, nekbone prints:
cg: iter rnorm

where iter should be 0, since the test is just beginning.

After niter iterations (set within src/drive.f of the nekbone source
code), a summary of the convergence is printed to stdout.

18 Chapter 5 — Details on Running and Editing Nekbone Examples

cg:iter rnorm alpha beta pap

The current configuration will run the conjugate gradient iterations
for a set number of iterations, niter, regardless if the solution has
converged beyond the set tolerance. The reported rnorm value is
the error between the ’correct solution’ and the found solution.

After the conjugate gradient sequence is completed, the total flop
count is printed to the screen.

’nelt , np nx1 , elements’

’Tot MFlops , MFlops’

’Setup Flop , Solver Flop ’

’Solve Time ’

More detail is given in Section 4.1. Since the default implemen-
tation of nekbone is set to run increasing elements per processor,
np remains constant and nelt should increase from 1 to lelt (set in
SIZE) or from iel0 to ielN (set in data.rea).

5.3.4 Bandwidth Test

If the bandwidth bisection test is turned on, nekbone will print
the results of the gather-scatter routines using the crystal router
exchanges done on an increasing number of points per process.

np npts npoints etime "bandwidth"

Where
np is the total number of processors
npts is the points per process exchanged
npoints is the total number of points in this test (np× npts)
etime is the average time it took to exchange these points across
processors.

This will test the rate of message transfers with increasing sized
messages of the total number of processes.

Chapter 6. Overview of Included Nekbone
Examples

The nekbone test directory includes several examples to illustrate
the various approaches applicable within nekbone.

6.1 The basic nekbone example, A template

The primary nekbone example is found in nekbone-3.1/test/example1.
This is the example used in the quick start, 2 and is considered the
baseline example of the nekbone mini application.

All of the default setup and editing remarks , found in 4.1, 5.1, and
5.2 apply to this example.

There is a considerable amount of flexibility within this example to
modify the problem based on the parameters found in the SIZE and
data.rea file. (See section 3.1)

6.2 The simplest example, example2

To run a clean, all parameters set at default, test, nekbonei-3.1/test/example2
has been provided. This example will run one test with a set num-
ber of elements per processor and a set polynomial order. Fur-
ther, it will run without the multigrid preconditioner and without
user-provided decompositions of the processor counts and the ele-
ments. Some easy adjustments to the example would be to compile
with MGRID in the PPLIST= variable in the makenek script. This
would allow a comparison between the basic diagonal preconditioner
and the multigrid preconditioner.

6.3 The more complex example, example3

Set to compile and run the multigrid preconditioner, nekbone-3.1/test/example3
is a slightly more complex example. Besides MGRID being included
in the makenek script, the data.rea parameters have been adjusted
to distribute the 50 elements per processor in a more 2D decomposi-
tion. Instead of having nekbone prescribe the elements distribution,
this example specifies a 25-by-2-by-1 distribution.

20 Chapter 6 — Overview of Included Nekbone Examples

6.4 The Multigrid Preconditioner Example

The example is found in nekbone-3.1/test/nek mgrid.

All of the default setup and editing remarks , found in 4.1, 5.1, and
5.2 apply to this example.

The makenek script includes the symbol MGRID, so the multigrid
preconditioner will be enabled. Further, the data.rea file parameters
have been edited to run 2 polynomial orders. The first set of tests
will run with a polynomial order of 8, and the second will run the
same element counts with a polynomial order of 10.

6.5 Special Platform Performance Example, nek comm

Found in nekbone-3.1/test/nek comm, this example will only per-
form the platform profiling tests. The reported data will detail
communication measures such as the optimal matrix-vector subrou-
tines, ping-pong tests, and all reduce times for increasing message
sizes. Since this example is solely for the platform profile and does
not implement any of the Poisson solver routines, the setup has
been simplified. There is no data.rea file needed in this example,
although one has been included for general symmetry between ex-
amples. This is an exception to the rule that all examples must
use these files. All of the remarks in 5.2 pertaining to compiling
nekbone examples are still relevant to this example. However, since
there is no geometry to be setup, the observations in 5.1 can be
overlooked.

Successful compilation of this example will result with a binary ex-
ecutable, nekbone, in the test directory. Note that the makefile has
included a PPLIST symbol, NEKCOMM , to trigger the inclu-
sion of the necessary files for the communication-only tests.

6.6 Load Imbalance Example, nekdlay

By implementing a time delay based on the node id, nekbone is able
to simulate a machine where only a subset of nodes have an im-
balance. This example is found in nekbone-3.1/test/nek delay.
The delay features are triggered by including NEKDLAY in the
PPLIST = variable in the makenek script.

The delay feature is controlled from within the driver dlay.f file with
the parameters: tmean, tavg, rms, d range, int calls

6.6 Load Imbalance Example, nekdlay 21

The delay is found by sampling from a Gaussian centered around
the value, tmean which is set in the driver dlay.f file. The stan-
dard deviation, rms, is between [0,d range] using a basic rejection
method. Finally, the delay is normalized so the the average is tavg.
A resampling is done every int calls.

This delay function is called before every MPI call, by every process,
to simulate a processor delay.

At the end of the test, the total elapsed time is reported to demon-
strate the effects of the delay on the overall time, including the setup
time. In addition an increase in the overall time spent in nekbone,
there should be an increase in each conjugate gradient calculation.
This value is printed to stdout as part of the conjugate gradient
output, explained in section 5.3.

Like the original nekbone example, nek dlay is controlled with the
parameters found in SIZE and data.rea.

Chapter 7. Nekbone & Nek5000

7.1 How Nekbone Represents Nek5000

As described above, nekbone is a conjugate gradient solver with
the option for a simple or multigrid preconditioner implemented.
Nek5000’s temperature solve is a conjugate gradient iteration with
multi-level point-Jacobi preconditioner. Any Nek5000 application
that spends a majority of time in the temperature solver will very
closely resemble a nekbone test ran on a large, brick element count.
We have found that Nek5000 runs at parallel efficiency at ∼6,000-
10,000 points per core. This means that the total degrees of freedom
(lelt× lx13) of a nekbone test should also follow this rule of thumb
and one should expect to see similar results as nekbone scales to
large processor counts. Also, both Nek5000 and nekbone’s memory
requirements scale as lelt× (lx13).

A Nek5000 Case with natural convection at high Rayleigh num-
ber (Ra > 1010) will spend around 82% of the CPU time in the
Helmholtz solve. Of this, 19% is spent in the precondition, which
is not yet in nekbone. This leave 63% of the run time spent in
calculations that are represented by the kernels found within nek-
bone. Since a principal challenge of exascale is to boost single-node
performance, nekbone focuses on the main kernel in question.

7.2 MPI Communication within Nekbone

The communication kernel used in the standard Nek5000 software
is the exact kernel used in this more basic code. nekbone commu-
nication is nearest-neighbor communication which is the majority
of what is found in the Nek5000 application. Written primarily
in C and C preprocessor, the communication routines are found in
nekbone-3.1/src/jl/. The mini application accesses these rou-
tines to set up and exchange information across processors. The
code is a parallel code, utilizing the MPI standard. Most MPI rou-
tines are employed through a wrapper found in comm mpi.f.

7.3 Optimization Opportunities 23

7.3 Optimization Opportunities

Nekbone provides multiple levels of optimization. Since the bulk
of the nekbone code focuses on the matrix-vector operations, this
is a section of the code that could be highly optimized. Already,
these routines have been optimized on most platforms common in
the current computing resources.

The gradient kernel include 3 matrix-vector calls on the same data
and the gradient-transpose kernel includes 3 matrix-matrix calls on
different data to produce one output.

