Argonne°

NATIONAL LABORATORY

Data-driven Codesign

Tom Peterka, ANL
Analysis

Tim Tautges, ANL
Venkat Vishwanath, ANL
Joe Insley, ANL

Vijay Mahadevan, ANL
Jon Woodring, LANL

Codesign and Data-driven Codesign

= The codesign process: apply the scientific method to the
design of future computing hardware and software

Formulate driving questions

Find and implement canonical problems in the form of proxy apps
Design an experiment to using the proxy app to answer the questions
Form a hypothesis

Identify parameters, input and output

Identify instruments used to measure data

Run the tests, gather and analyze results

Conclude something with respect to original driving questions

= Data-driven codesign

Driving questions are related to data-intensive tasks: coupling, analysis,
visualization, storage (as opposed to compute-intensive)

Proxy apps have data, not necessarily compute (as opposed to compute-
intensive)

Driving Questions (i)

= Data-intensive algorithms and data structures

Data models: How do analysis data models differ from computational
data models, and how does data access via a coupled data model
compare to native data models?

Data movement: What is the impact of data movement on the
system, and how can we design algorithms to minimize, optimize, or
hide data movement? How can data-intensive tasks be located and
scheduling ?

Data operations: What programming models are needed for data
processing and (how) do they differ from computational
programming models (for example, random access to remote data)?
What are appropriate problem decompositions for such problems?

Data access: How does data movement and placement impact the
design of new storage devices and systems, for example active
memory cube or NVRAM?

Driving Questions (ii)

= Data-intensive systems and architectures

— System level: What is the recommended configuration of compute,
analysis, and storage in the entire leadership facility? Will data analytics
clusters continue to exist and how should they be sized w.r.t. HPC machines,
or will data analytics be folded into the design of HPC machines (for example,
Blue Waters, Titan)?

— Component level: What compute node specifications can be derived from
data-intensive findings of the previous slide? What network parameters (for
example bandwidth and latency) will support the needed data movement?
What network topologies will provide these capabilities? What storage
hierarchy, from registers to archives, is needed for data-intensive science?

Data-Intensive Proxy Apps Help Answer Questions

First, we have to rethink what a data-intensive proxy is. Unlike a compute
proxy that keeps computation or communication and removes data, we
need just the opposite: data products without the computation.

= Goals

— Acquire representative raw data in the coupled application interface

e Meshes and solutions are stored and later read back into proxies without rerunning
simulation

— Make data available to analysis, visualization, storage

e Write proxies that test canonical data problems: coupling, analysis, visualization,
storage

— Test algorithms and benchmark performance
— Use results to influence co-design process

— Make proxies available to other subgroups (eg. GPGPUs, programming models,
performance modeling)

= Challenges
— How well do proxies represent actual problems? In our case, how well do they the
represent real data?
e Real features, eg., vortices, data distributions, outliers, correlations among variables
e Stored solutions from actual computational runs

Cian

Cian (CESAR Integrated Analytics) is a suite of proxy apps covering our
four main research areas:

= Coupling @
= Analysis

Coupling

= Visualization
= Storage

Software consists of four proxy apps for the above components in one
package (cian.tar.gz), plus additional proxies to explore deeper
research questions in more detail (MOAB2VTK, others TBD)

Cian plus additional proxies (will) all appear together on the same
web page for download. Exact amount of integration between cian
and additional coupling and datavis proxies is ongoing.

(a) Coupling Proxy App

the | w1 b
- 1

Sample mesh of 1M
.. : hexahedral cells.
Driving questions

Sample mesh of 1M
tetrahedral cells.

— What is the memory requirement to access data via the coupled interface, in
terms of data and code?

— How does it compare with access to the native interfaces of individual codes?
— What is the performance and accuracy of coupling
Method

— Reads two different test meshes

— Transfers solution from first mesh to second (ie, couples the meshes)
— Computes error between transferred solution and original
Relevance

— Coupling essential to entire project and to multiphysics problems

(a) Coupling Proxy App

= Parameters

— Inputs: different mesh types (hex FEM, tet FEM, SEM), same or different
communicators, same or different processes for source and target mesh.

— Outputs: timing, memory footprint, accuracy
= |nstrumentation

— timing: MPI_Wtime(), memory footprint: time series of memory size, accuracy:
max and RMS error between projected field and reference field.

= Hypothesis

— Accuracy will vary with order of projection. Communication and time will be less
with multiple meshes on same node, but memory cost will double. Node memory

size will be determined by whether we choose to support 2 meshes on the same
node. Unclear whether number of communicators will have an impact.

L2 norm of error

(a) Early Results

Source
Mesh

512 hex
1k hex
512 hex
1M hex
1M hex
1M tet

Error scales as expected with mesh size

Target
Mesh

1k hex

512 hex
1M hex
512 hex
1M tet
1 M hex

Norm. Vertex
RMS Error

0.6%
0.4%
0.6%
0.0%
0.0%
1.3%

Norm. Element
RMS Error

4.6%
2.6%
4.4%

0.3%
0.3% Coupling a 7M hex mesh to a 28M tet mesh

0.8%

16-4k procs, 7M hex — 28M tet

Intrepid, 7M elements

1 ’- I,‘ T 10000 ; . T . ey T T —]
r @rge Hlll 1ex Instantiation 4 |
Point Location <
Interpolation ¥
1000 |- + 4
+ J
+ 4
100 | + i
+ 4
G X +
0.1 — - E 10 | X I _
= X . 4
+
1 * ¥ X X i
x X X X 1
*
x ” g
01 % % 4
fixed hsou e+ ¥ X
SOEI’CE tal’ﬁ@ X
0.01 - . 0.01 L T L L] . PR |
0.01 0.1 1 10 100 1000 10000
2 # procs
al

L e L L

(b) Analysis Proxy App

= Driving questions

— What is the relative cost of point location, interpolation, and communication?

— How does the relative balance of these costs change with stencil size and
mesh type?

— What resources are needed?
= Method

— Stencil computation accessing remote neighboring data to a specified
distance in 3D space, requiring access to several topological neighbors. The
analysis proxy in cian reads a MOAB mesh and executes a stencil operator. It
accesses data from neighboring blocks and samples it regularly in the stencil
boundaries. The computation at each point in the stencil is multiply-add.

= Relevance

— Stencils are common analysis operators used for convolution, filtering, and
pattern recognition. The Lambda-2 vorticity finder is one example. The size of

the stencil has a direct effect on data intensity and computational intensity of
the operator.

10

(b) Analysis Proxy App

= Parameters
— Inputs: cell type (spectral, finite), cell order, stencil size, stencil location from
block boundary
— Outputs: overall, computation, sampling, communication costs, where costs
are defined below

= |nstrumentation
— Costs measured in time, power, memory accesses, communication rounds,
communication volume, flops, instruction mix

= Hypothesis

— Higher order elements require more sampling, local computation. Larger
stencils require more communication. Look for opportunities to overlap
computation and communication, ideally evenly matched. Block size shifts
the balance of compute / communicate. RDMA, smart NICS, low latency

interconnect, cache size proportional to stencil size.

11

(b) Early Results

Communicating enough
neighboring cells to
compute a stencil of
additional width t

Load mesh from MOAB

Initialize DIY Number of blocks = 512

For (all blocks) 12 ghost cells received by block 1
get block bounds and neighbors from MOAB 8 ghost cells received by block 2

Replicate decomposition in DIY 18 ghost cells received by block 3

while (!done) { 12 ghost cells received by block 4
for (cells) { 18 ghost cells received by block 5

12 ghost cells received by block 6
26 ghost cells received by block 7
18 ghost cells received by block 8
18 ghost cells received by block 9

for (neighbors) {
if (cell intersects neighbor extents + t)
post cell to neighbor;

} 12 ghost cells received by block 10
} 25 ghost cells received by block 11
Exchange neighbors; 18 ghost cells received by block 12
Check whether done

o\)

(c) In Situ Visualization and Analysis Study

= Driving questions

5K 4th-order spectral element mesh
with proxy CFD solution data,
rendered in wireframe mode.

How many additional resources are necessary for in situ analysis?

= Method

Analyze finite element and spectral element meshes with “in situ workflow”
Compare deep and shallow copy from simulation to analysis data structures

Read or generate mesh, perform deep or shallow copy from simulation to
analysis data model, execute analysis filter, and write data product

= Relevance

Additional memory usage for in situ analysis can be significant if the mesh
needs to be copied for an analysis data model required by visualization

HPC machines and science problems can be memory constrained

Study if run-time data model translation between simulation mesh and analysis
mesh (shallow copy) is a viable technique to reduce memory pressure and
what run-time costs, if any, are incurred by shallow copy vs. deep copy

13

\
(c) Experimental Proxy App - “MOAB2VTK”

= Parameters

= |nputs
= MOAB mesh: data file or generated mesh

= System: number of processes, single node, distributed

VTK analysis: none, read all, isocontour, clip, slice, threshold

VTK render: none, surface render

VTK data model: base (interface = implementation), virtual
(abstract interface with MOAB and VTK implementations)

— Outputs
e Time per execution stage per process, memory per execution stage per process
= Hypothesis
— Existing VTK data model has a large footprint for unstructured meshes

— Shallow copy will save memory to help simulation workloads that are
tight on memory

— Run-time translation (shallow copy) of data model should not be too
expensive depending on number and type of visualization and analysis;
no cost to doing virtual functions to implement the shallow copy

14

(c) “MOAB2VTK?” Early Results

= Running 1-16 processes on HP SL230
— 1-16 million tets

= Running 1-16 processes on HP DL980
— 1-16 million tets

= Running 16-512 processes on LANL
cluster

Very first example of a simple

. MOAB mesh with shallow copy
" Preparing the results for a direct data access in VTK

Supercomputing 2013 paper

timer (s), start, end, elapsed

read MOAB, 71777.464122988, 71778.000071778, 1.090433001

copy + benchmark total, 71778.600565748, 71798.000071798, 20.264674139

deep copy total, 71778.600620503, 71780.000071780, 2.007776966

create id map, 71778.600630560, 71778.000071778, 0.000137727

create cells, 71778.600773037, 71778.000071778, 0.281072035

create points, 71778.881932793, 71779.000071779, 0.118359177

create data arrays, 71779.000509037, 71780.000071780, 1.540699166

create grid, 71780.541217143, 71780.000071780, 0.066829164

clip total, 71780.672058353, 71795.000071795, 14.935525324

render total, 71795.657863810, 71798.000071798, 3.207372445

rendering, 71796.450663454, 71798.000071798, 2.174128275

name (kB), size, rss, pss, shared clean, shared dirty, private clean, private dirty, referenced, anonymous, anon huge
before reading mesh, 988380, 80004, 28797, 67704, 52, 0, 12248, 80004, 12168, 0, 0, 0, 80004

after reading mesh, 1070372, 150308, 98426, 68584, 68, 0, 81656, 150308, 81580, 40960, 0, 0, 70304
after copying to VTK, 1159020, 238960, 186872, 68872, 68, 0, 170020, 238960, 169944, 81920, 0, 0, 88652

after clipping, 1230824, 310564, 258103, 69356, 68, 0, 241140, 310564, 241064, 120832, 0, 0, 71604
after running the filter, 1230824, 310812, 258351, 69356, 68, 0, 241388, 310812, 241312, 120832, 0, 0, 248

IFLer rumning everyining 1396964, 482784, 428067, 19872, Gaa. 344, aossra. agared aessre. nissee. o 0. -ser0s ONE OF the tests in MOAB2VTK — clip
4 million quads, surface render
colored by element id, parallelized by ¢
4 processors

— 1-512 million quads

(d) Storage Proxy App

= Driving questions

How does actual checkpoint writing compare to benchmarks
How does writing analysis data differ from checkpoint data

= Method

Read mesh interface handle

Writes mesh to storage (checkpoint)

Writes results of analysis or visualization proxy to storage
Compare using different formats and I/O libraries

Compare performance with 1/0 benchmarks and published performance for
similar I/O workloads

Test performance of parallel readers for visualization tools

= Relevance

Storage rates lag computational rates by greater factors with each new machine,
making storage a primary bottleneck. Storage isn't an issue at the moment, but
planning for the future

Storage data models: building relationship with MOAB team as part of this project
(and Damsel) and analysis work helping to understand data models present in
applications

Future storage resources: CODES work will help in assessing access patterns WRT
future storage (in coming years)

16

(d) Storage Proxy App

= Parameters

— Inputs: mesh type, I/0 library type (MOAB, MPI-I0), number of output files,
collective / independent |/O

— Outputs: time, percent peak storage bandwidth, strong and weak scaling
= |nstrumentation

— MPI_Wtime()

— Darshan
= Hypothesis

— Performance of shared file storage at high process counts degrades due to
lock contention; implication for exascale storage systems is to reduce or
eliminate locks in storage systems; Large numbers of files resulting from
subfiling will also be a problem for subsequent use. Scalability of high-level
libraries also will be problematic at high process counts.

17

(d) Early Results

= Data taken on Intrepid (IBM BG/P)

= Read/write for 32m hex, 64m tet elems
— Nowhere near ideal speedup
— Absolute time tolerable in most cases

— Drastic tet time improvement after
reordering by partition

e Fewer small fragments of HDF5
datasets

= Read/resolve/ghost times
— Read times about constant
— Resolving shared entities, exchanging
ghost entities close to linear speedup
= 7/8 time reduction for models w/o
edges/faces (geometry sets)

— Could also change partitioning tool so
this data didn’t have to be inferred

I —

time (sec)

Strong Scaling (total time)
10000

~#-64m tet (read)
<4 64m tet (write)
@ 32m hex (read)

A 32m hex (write)
1000 - - ideal

100

10

16 160 1600
#proc

16000

time (sec)

Strong Scaling (32m hexes)
1000

100

-
o

0.1
16 160 1600

#proc

16000

18

Activity
M1la: gNek

M1ib: MOC
GPGPU

Milestones Progress

D 1

Mic:
NEK-bone

Mid: MOC
multicore

M1le: OpenMC
GPGPU

M1f: Nek
multicore

M1ig: Sian
coupling ’

Level 1
Milestones

Complete

P

Proxy app

Proxy Apps *]

Déc
20_12

Develop

I I

Déc
M2a: Nek 2013
Perf Model

| |

M2b: MOC-FE
Perf Model

~1 7

M2c: OpenMC
Perf Model

suitev. 1

Dec
2014

Complete

Apps
Models . l

M3a: Multicore
OpenMC

Dec
2412

Evaluate MOC

M3b: GPGPU M3c: GPGPU M3d: BG/Q

l I

M3e:
Multicore
Nek NEK-bone MOC

[|

I

M3f: GPGPU M3g: Multicore

OpenMC Nek

+| Perf Models
X vl

Dec
2014

Complete

Arch . l

2012

I l

Mac: power Dec
analysis OpenMC 2013

Maa: tally M4b: memory pag: resiliency

Design servers

banding robust algs

| I

Mde: OpenMC
resiliency
Maf: GVR
tests

Mag: MOC
resiliency

l

Mdah: power
analysis MOCFE
Mdi: Nek
resiliency

Vendor
Evalsv. 1

Dec
2014

CESAR

L1 Milestones

Algorithms .]

| |

| |

|

— 1. L1 Milestone: Completion of the next phase of mini-apps development,
including a quantification of coverage with respect to the corresponding full

application, careful documentation and testing, etc. for third-party usage and

made available on website.

e L2 Milestone: Completion of v.1 of coupling mini-appe deliverable: new stand-
alone mini app that explores both numerical and data movement issues for
neutronics/CFD coupling for both particle-based or PDE-based methods.® metric
for progress: completion of sub-components of couplere components involved:

Data/Vis, Apps, Programming Models

¢ L3 Milestone: Prototype of Cian coupling mini-app for deterministic neutronics/
CFD couplinge deliverable: technical report demonstrating key findings. ® metric
for progress: lines of code written, early results ¢ components involved: Data/Vis,

Apps, Programming Models ¢ June 1, 2013

Exp. code
suite v.1

19

