
UNIC Code: Algorithmic Specification of the
Method of Long Characteristics

Technical Memorandum ANL/MCS-TM-301, June 2008
Division of Mathematics and Computer Science

Argonne National Laboratory

Stephen F. Siegel
Department of Computer and Information Sciences
103 Smith Hall
University of Delaware
Newark, DE 19716, USA
siegel@cis.udel.edu

Andrew R. Siegel
Mathematics and Computer Science Division
Argonne National Laboratory
9700 S. Cass Avenue
Argonne, IL 60439, USA
siegela@mcs.anl.gov

Cristian Rabiti
Nuclear Engineering Division
Argonne National Laboratory
9700 S. Cass Avenue
Argonne, IL 60439, USA
crabiti@anl.gov

ii

This page intentionally left blank.

iii

Contents

Abstract 1
1. The Steady State Neutron Transport Equation 2
1.1. Fundamental Equations 2
1.2. Energy Discretization 2
2. Geometry 3
2.1. Spatial Discretization 3
2.2. Integral Approximations 4
2.3. Boundary Condition 5
3. Outer Algorithm 5
4. Middle Algorithms 6
5. Inner Algorithm 8
6. Ray-tracing Algorithm 9
7. Conformance 12
References 12

1

Abstract

The purpose of this document is to specify the method of long characteristics algorithm
used in the UNIC neutron transport code.

2

1. The Steady State Neutron Transport Equation

1.1. Fundamental Equations. In this section we briefly review the fundamental integro-
differential equation that we wish to solve. It is beyond the scope of this paper to describe
the equation and its physical significance in detail. Such details are covered e.g. in [1].

Given σ, σs, σf , χ, and ν, we wish to solve the steady state neutron transport equation
for Keff and ψ:[

Ω̂ · ~∇+ σ(~r , E)
]
ψ(~r , Ω̂, E) =

∫
dE ′

∫
dΩ̂′ σs(~r , E ′ → E, Ω̂′ · Ω̂)ψ(~r , Ω̂′, E ′)

+
χ(E)

4πKeff

∫
dE ′ νσf (~r , E ′)

∫
dΩ̂′ ψ(~r , Ω̂′, E ′)

(1)

The notation is summarized in Figure 1. Notice that both sides of (1) are functions of ~r ,

Ω̂, and E. The integral over energy (E ′) runs from 0 to ∞; the integral over angle Ω̂′ is an
integral over the surface of the unit sphere S2 (which has area 4π).

For simplicity in this version of the specification we assume isotropic scattering : i.e., σs is
independent of µ. Note that when modeling nuclear reactor cores (the principle application
domain of UNIC) this is not necessarily a good assumption and instead we will require an
expansion of the flux to at least several Pn modes. This and other features will be included
in a subsequent version of the specification.

For the isotropic scattering case we can write σs(~r , E ′ → E) for σs(~r , E ′ → E, µ) for any
µ. Then (1) becomes[

Ω̂ · ~∇+ σ(~r , E)
]
ψ(~r , Ω̂, E) =

∫
dE ′ σs(~r , E ′ → E)φ(~r , E ′)

+
χ(E)

Keff

∫
dE ′ νσf (~r , E ′)φ(~r , E ′),

(2)

where

φ(~r , E) =
1

4π

∫
S2

ψ(~r , Ω̂, E) dΩ̂

is the normalized isotropic scalar flux. Notice that in this case the right hand side of (2) is

independent of Ω̂.

1.2. Energy Discretization. We now assume the energy dimension has been discretized
by specifying G+1 real numbers EG < EG−1 < . . . < E1 < E0. For 1 ≤ g ≤ G, energy group
g is defined to be the interval of real numbers [Eg, Eg−1]. We let

ψg(~r , Ω̂) =

∫
g

dE ψ(~r , Ω̂, E)(3)

φg(~r) =
1

4π

∫
dΩ̂ψg(~r , Ω̂).(4)

Recasting (2) in terms of these discrete energy groups requires the calculation of multigroup
cross sections. The simplest way to do this is to assume that for each g, there is a function
f(E) defined on [Eg, Eg−1] such that

ψ(~r , E, Ω̂) ≈ f(E)ψg(~r , Ω̂).

3

symbol meaning
~r position vector
v neutron speed
E neutron energy (1

2
mv2)

Ω̂ direction of neutron motion (θ, φ)

ψ(~r , Ω̂, E) neutron angular flux

φ(~r , E) neutron scalar flux: 1
4π

∫
dΩ̂ψ(~r , Ω̂, E)

σ(~r , E) total interaction cross section
µ cosine of scatter angle

σs(~r , E ′ → E, µ) macroscopic scattering cross section
σs(~r , E ′ → E) macroscopic scattering cross section (isotropic case)

σf (~r , E) macroscopic fission cross section
χ(E) energy distribution for fissioned neutron evaluated at E

ν average number of neutrons emitted per fission
Keff a generalized eigenvalue

Figure 1. Symbols used in describing the linear Boltzman equation

Then define

σg(~r) =

∫
g

dE σ(~r , E)f(E)(5)

σfg (~r) =

∫
g

dE σf (~r , E)f(E)(6)

σsgg′(~r , µ) =

∫
g

dE

∫
g′
dE ′ σs(~r , E ′ → E, µ)f(E ′)(7)

To simplify the presentation, we shall just assume that suitably calculated multigroup cross
sections are provided. For details, see [1, 2-2].

Discretizing (2), we arrive at one equation for each group g:

(8)
[
Ω̂ · ~∇+ σg(~r)

]
ψg(~r , Ω̂) =

∑
g′

σsgg′(~r)φg′(~r) +
χg
Keff

∑
g′

νσfg′(~r)φg′(~r).

2. Geometry

2.1. Spatial Discretization. We assume the domain is partitioned into N distinct regions
Vn (1 ≤ n ≤ N), called elements. The volume of Vn is vol [n]. The average scalar flux for
group g in Vn is defined to be

φg[n] =
1

vol [n]

∫
Vn

φg(~r) dV.

The angular space, which can be identified with the unit sphere S2, is partitioned into
I distinct “angular regions.” For each i, Ω̂i will denote some fixed angle in angular region
i. We let ∆Ω̂i denote the quotient of the area (on the unit sphere) of the ith region by 4π.

4

Since 4π is the area of S2, we have

I∑
i=1

∆Ω̂i = 1.

Moreover, the integral of a function f defined on S2 can be approximated as follows:

1

4π

∫
S2

f(Ω̂) dΩ̂ ≈
I∑
i=1

fi∆Ω̂i,

where fi is the representative value for f in angular region i.
For each i, we are given Ji trajectories (i.e., rays, also referred to as “tracks”) in the

direction Ω̂i. The trajectories are numbered 1, . . . , Ji. Each trajectory has associated to it a
trajectory cylinder with cross-sectional area ∆Si,j. One way to think of this is to associate

to each i a plane P such that lines perpendicular to P are oriented in the direction of Ω̂i.
Then a finite region of P can be partitioned into Ji disjoint subregions, with one starting
point per subregion, and ∆Si,j is the area of the jth such subregion. In any case, the volume
of a “slice” of cylidner j for angular region i is the product of ∆Si,j and the length of that
slice.

Each trajectory enters the domain, passes through a sequence of elements, and then exits
the domain. (We will assume the domain being modeled is convex so that it is not possible
to exit and re-enter the domain.) We let Ki,j denote the number of elements encountered by
trajectory j of angular region i, and we let ι(i, j, k) (1 ≤ k ≤ Ki,j) denote the index n of the
kth element intersected. The length of the intersection of the trajectory with Vn is denoted
`(i, j, k). The point at which the ray enters Vn is denoted pi,j,k. We also let pi,j,Ki,j+1 be the
point at which the ray exits the domain.

We let

ψg[i, j, k] = ψg(pi,j,k, Ω̂i),

though we note that the algorithms only need to store these quantities for k = 1. For this
reason we set

ψg[i, j] = ψg[i, j, 1].

This is the angular flux in direction Ω̂i at the point at which the jth trajectory for Ω̂i first
intersects the domain.

2.2. Integral Approximations. If the trajectories have been chosen appropriately then
for any n and any i, we can consider all trajectories in direction Ω̂i that intersect Vn, and we
can form the slice of each trajectory cyclinder whose axis is the intersection of the trajectory
with Vn. These cylinder slices should roughly partition Vn. This allows us to approximate
the integral of a function f defined on Vn as follows:

(9)

∫
Vn

f(~r , Ω̂) dV ≈
Ji∑
j=1

∑
k

1≤k≤Ki,j

ι(i,j,k)=n

∆Si,j

∫ `(i,j,k)

0

f(pi,j,k + tΩ̂) dt

Note that, for any i and j, the sum over k consists of at most 1 term; if it consists of 0 terms
it is considered to be 0.

5

If we apply this to the function f ≡ 1, the left hand side of (9) is precisely vol [n], and we
define the right hand side to be vol ′[i, n], i.e.,

(10) vol [n] ≈
Ji∑
j=1

∑
k

1≤k≤Ki,j

ι(i,j,k)=n

`(i, j, k) ∆Si,j ≡ vol ′[i, n].

In fact, we can use (10) to improve the accuracy of the approximation made in (9), as follows:

(11)

∫
Vn

f(~r , Ω̂) dV ≈ vol [n]

vol ′[i, n]

Ji∑
j=1

∑
k

1≤k≤Ki,j

ι(i,j,k)=n

∆Si,j

∫ `(i,j,k)

0

f(pi,j,k + tΩ̂) dt

In particular, approximation (11) is precise for f ≡ 1.

2.3. Boundary Condition. The behavior at the boundary of the modeled domain is spec-
ified by real numbers ρ(i, j; i′, j′) (1 ≤ i, i′ ≤ I, 1 ≤ j ≤ Ji, 1 ≤ j′ ≤ Ji′). These numbers
specify how neutrons exiting the domain along trajectory j of angular region i re-enter the
domain. A neutron traveling along a path within ∆Ω̂i ∆Si,j may re-enter along a path within

∆Ω̂i′ ∆Si′,j′ with probability

ρ(i, j; i′, j′).

If the boundary is purely reflective (no neutrons are lost), then for any i, j,∑
i′,j′

ρ(i, j; i′, j′) = 1.

If the boundary is a vaccum (neutrons never return), then ρ ≡ 0.

3. Outer Algorithm

We now turn to the detailed description of the MOC algorithm for solving equation (2).
The parameters that are considered inputs to the algorithm and are not modified at any
time by the algorithm are listed in Figure 2.

The high-level pseudcode for the MOC algorithm is given in Figure 3. This is called the
outer algorithm because its convergence loop is the outer-most loop in the MOC algorithm.
The outer algorithm relies on subroutines, described in subsequent sections, which rely on
their own convergence loops.

The outer algorithm is provided with all of the global constants, together with initial
guesses for Keff, the values of ψ on the boundary of the domain, and the values of φ through-
out the domain. These guesses determine values for the fission component of the source, i.e.,
for

Qf
g (~r) =

χg
Keff

∑
g′

νσfg′(~r)φg′(~r).

The Qf
g are integrated over space and energy to yield a single scalar quantity called the total

fission. Now, equation (8) can be written

(12)
[
Ω̂ · ~∇+ σg(~r)

]
ψg(~r , Ω̂) =

∑
g′

σsgg′(~r)φg′(~r) +Qf
g (~r).

6

symbol meaning
N the number of finite elements

vol [n] the volume of element n (1 ≤ n ≤ N)
I number of angles

∆Ω̂i weight of the ith angle, divided by 4π
Ji number of trajectories for angle i (1 ≤ i ≤ I)

∆Si,j the cross-sectional area of trajectory j for angle i
Ki,j number of elements intersected by trajectory j of angle i

(1 ≤ i ≤ I, 1 ≤ j ≤ Ji)
ι(i, j, k) index of kth element intersected by trajectory j of angle i

(1 ≤ i ≤ I, 1 ≤ j ≤ Ji, 1 ≤ k ≤ Ki,j)
`(i, j, k) length of intersecting segment above

vol ′[i, n]

Ji∑
j=1

∑
k

1≤k≤Ki,j

ι(i,j,k)=n

`(i, j, k) ∆Si,j

ρ(i, j; i′, j′) reflective boundary condition coefficients
G the number of energy groups
H beginning of up-scattering region

σg[n] total macroscopic cross section for element n, group g
σsgg′ [n] macroscopic scattering cross section from g′ to g for element n
σfg [n] macroscopic fission cross section for element n, group g
χg discretized energy distribution for fission at group g
ν average number of neutrons emitted per fission
εK tolerance for Keff

εφ tolerance for scalar flux in outer algorithm
ε′φ tolerance for scalar flux in up-down-scatter algorithm
ε′′φ tolerance for scalar flux in inner algorithm

Figure 2. Global parameters used by all algorithms

Considering the Qf
g to be fixed, we arrive at a system of G equations that must be solved

simultaneously for ψ (on the boundary) and φ (throughout). We will discuss shortly the
procedure for solving this system. Once an approximate solution has been achieved, the new
values for φ are used to calculate new values for the Qf

g , and the total fission is re-computed.
The ratio between the new and old values for the total fission is used to update the estimate
for Keff, and we proceed to solve the new simultaneous system. Iteration stops when the
rates of change of Keff and of φ fall below specified tolerances.

4. Middle Algorithms

We now turn to the “middle” algorithms that are used to solve the simultaneous systems
described above. Typically, the scattering matrix (σsgg′) is “largely” lower triangular. That
is, there is some H (1 ≤ H ≤ G), usually close to G, such that σgg′ ≡ 0 whenever g < H
and g′ > g. (This reflects the fact that, for the most part, the neutrons tend to lose energy
after scattering, except perhaps in the very low end of the energy spectrum.) In this “down-
scattering only” region, the system of equations can be solved sequentially: equation (12)

7

In : all global parameters (Fig. 2)
InOut: Keff, φg[n] (1 ≤ g ≤ G, 1 ≤ n ≤ N)

ψg[i, j] (1 ≤ g ≤ G, 1 ≤ i ≤ I, 1 ≤ j ≤ Ji)
Data : Qin

g [n] (1 ≤ g ≤ G, 1 ≤ n ≤ N)
φ′g[n] (1 ≤ g ≤ G, 1 ≤ n ≤ N)
fission[n] (1 ≤ n ≤ N)

totalFission ← 0;1

for n← 1 to N do2

fission[n]←
∑

g φg[n]νσfg [n];3

totalFission ← totalFission + vol [n]fission[n];4

foreach g do Qin
g [n]←

∑
g′ 6=g φg′ [n]σsgg′ [n] + χg fission[n]/Keff;5

end6

repeat7

downScatterOnly(φ1...G;ψ1...H−1, Q
in
1...G;φ′1...H−1);8

upAndDownScatter(φH...G;ψH...G, Q
in
H...G;φ′H...G);9

errφ ← ||φ′ − φ||;10

totalFission ′ ←
∑

g,n vol [n]φ′g[n]νσfg [n];11

K ′eff ← Keff totalFission ′/totalFission;12

errKeff
← |K ′eff −Keff|/K ′eff;13

for n← 1 to N do14

t← fission[n];15

fission[n]←
∑

g φ
′
g[n]νσfg [n];16

foreach g do Qin
g [n]← Qin

g [n] + χg fission[n]/K ′eff − χgt/Keff ;17

end18

Keff ← K ′eff ;19

totalFission ← totalFission ′;20

foreach g, n do φg[n]← φ′g[n];21

until errKeff
≤ εK ∧ errφ ≤ εφ ;22

Figure 3. Outer algorithm

In : φg[n] (1 ≤ g ≤ G, 1 ≤ n ≤ N)
InOut: ψh[i, j] (1 ≤ h < H, 1 ≤ i ≤ I, 1 ≤ j ≤ Ji)

Qin
g [n] (1 ≤ g ≤ G, 1 ≤ n ≤ N)

Out : φ′g[n] (1 ≤ g < H, 1 ≤ n ≤ N)

for h← 1 to H − 1 do1

inner(h, φh, Q
in
h ;ψh;φ

′
h);2

for g ← h+ 1 to G do3

foreach n do Qin
g [n]← Qin

g [n] + (φ′h[n]− φh[n])σsgh[n];4

end5

end6

Figure 4. downScatterOnly

8

In : φg[n] (H ≤ g ≤ G, 1 ≤ n ≤ N)
InOut: ψg[i, j], Q

in
g [n] (H ≤ g ≤ G, 1 ≤ i ≤ I, 1 ≤ j ≤ Ji, 1 ≤ n ≤ N)

Out : φ′g[i] (H ≤ g ≤ G, 1 ≤ i ≤ N)

foreach g ∈ {H, . . . , G}, n ∈ {1, . . . , N} do φ′g[n]← φg[n];1

repeat2

errφ′ ← 0;3

for g ← H to G do4

inner(g, φ′g, Q
in
g ;ψg;φ

′′);5

foreach g′ ∈ {H, . . . , G} \ {g} do6

foreach n do Qin
g′ [n]← Qin

g′ [n] + (φ′′[n]− φ′g[n])σsg′g[n];7

end8

errφ′ ← errφ′ + ||φ′′ − φ′g||;9

foreach n ∈ {1, . . . , N} do φ′g[n]← φ′′[n];10

end11

until errφ′ ≤ ε′φ ;12

Figure 5. upAndDownScatter

for g = 1 involves only ψ1 and φ1, and not any ψk or φk for k > 1. (We will discuss shortly
the subroutine for solving this equation.) The solutions for g = 1 can then be substituted
into equation (12) for g = 2, which then involves only ψ2 and φ2, which is then solved, and
so on. The precise algorithm dealing with the down-scattering-only region is given in Figure
4.

For the region g ≥ H, where up and down scattering are possible, an iteration scheme is
used. This algorithm is described in Figure 5.

5. Inner Algorithm

In : g, φ[n], Qin[n] (1 ≤ n ≤ N)
InOut: ψ[i, j] (1 ≤ i ≤ I, 1 ≤ j ≤ Ji)
Out : φ′[n] (1 ≤ n ≤ N)
Data : φ′′[n], Q[n] (1 ≤ n ≤ N)
foreach n do φ′[n]← φ[n];1

repeat2

foreach n ∈ {1, . . . , N} do3

φ′′[n]← φ′[n];4

Q[n]← Qin[n] + σsgg[n]φ′′[n];5

end6

raytrace(g,Q;ψ;φ′);7

until ||φ′ − φ′′|| ≤ ε′′φ ;8

Figure 6. inner

9

Both of the middle algorithms rely on a subroutine to solve an equation involving only
one group g. Let

(13) Qin
g (~r) =

∑
g′ 6=g

φg′(~r)σsgg′(~r) +
χg
Keff

∑
g′

φg′(~r)νσfg′(~r).

Then we can re-write (12) as the in-group equation

(14)
[
Ω̂ · ~∇+ σg(~r)

]
ψg(~r , Ω̂) = φg(~r)σsgg(~r) +Qin

g (~r).

In (14), Qin
g is considered fixed, and the problem is to solve for ψg (on the boundary) and

φg (throughout). The algorithm to do this is called the inner algorithm, and is described in
Figure 6.

The inner algorithm begins with the current best estimate of φg. Given this, we can
compute the total source

(15) Qg(~r) = φg(~r)σsgg(~r) +Qin
g (~r).

Equation (14) then becomes

(16)
[
Ω̂ · ~∇+ σg(~r)

]
ψg(~r , Ω̂) = Qg(~r).

The problem now is to solve (16), treating the total source Qg as fixed. This is accomplished
by the ray-tracing algorithm, which is described in detail below. The ray-tracing algorithm
takes as input the current best estimate for ψg on the boundary and the total source Qg.
It outputs the new boundary values of ψg, and the values of φg throughout the domain,
approximately satisfying (16). The new values of φg(~r) are used to update the total source
Qg(~r) using (15), and the ray-tracing technique is applied again. Iteration continues in
this way until the relative change in φg between successive iterations falls below a specified
tolerance.

6. Ray-tracing Algorithm

We now turn to the ray tracing algorithm for solving (16), the central technique of the
MOC. We will drop the subscript g to simplify the notation. The pseudocode for the algo-
rithm is given in Figure 7.

The idea of the ray-tracing algorithm is to sample the domain with a set of rays that pass
through the domain at various angles Ω̂ and that have various starting points. Restricted
to a single ray and a single element, (16) becomes a simple first order ordinary differential
equation in one variable, which can be solved analytically. One computes the solution along
a ray by starting at the point at which the ray enters the boundary, where the value of ψ is
given, and propagating forward to compute the value of ψ at successive elements intersected
by the ray. As we shall see, the average scalar flux φ in an element can be approximated by
a sum. Each ray passing through the element contributes one term to the sum. That term
is a function of the value of ψ where the ray enters the element and the value where the ray
exits the element. After each new value of ψ is computed, the contribution to the scalar flux
is computed and added to the variable storing φ for that element. The incoming value of ψ
can then be forgotten. This is how the algorithm avoids storing ψ at all elements.

The analytical solution is obtained as follows. Assume that

p = (x0, y0, z0) ∈ R3

10

In : g, Q[n] (1 ≤ n ≤ N)
InOut: ψ[i, j] (1 ≤ i ≤ I, 1 ≤ j ≤ Ji)
Out : φ′[n] (1 ≤ n ≤ N)
Data : ψ′[i, j] (1 ≤ i ≤ I, 1 ≤ j ≤ Ji)
foreach n ∈ {1, . . . , N} do φ′[n]← 0;1

foreach i ∈ {1, . . . , I}, j ∈ {1, . . . , Ji} do ψ′[i, j]← 0;2

foreach i ∈ {1, . . . , I}, j ∈ {1, . . . , Ji} do3

ψout ← ψ[i, j];4

for k ← 1 to Ki,j do5

ψin ← ψout;6

n← ι(i, j, k);7

γ ← e−σg [n]`(i,j,k);8

β ← (1− γ)/σg[n];9

ψout ← ψinγ + βQ[n];10

φ′[n]← φ′[n] +
∆Ω̂i ∆Si,j (Q[n]`(i, j, k) + ψin − ψout)

σ[n]vol ′[i, n]
;

11

end12

foreach i′, j′ do ψ′[i′, j′]← ψ′[i′, j′] +
∆Ω̂i ∆Si,j

∆Ω̂i′ ∆Si′,j′
ρ(i, j; i′, j′)ψout;

13

end14

foreach i, j do ψ[i, j]← ψ′[i, j];15

Figure 7. raytrace

is the point at which a ray enters an element and that the ray is oriented in direction

Ω̂ = (u, v, w) ∈ S2.

Assume furthermore that we are given ψin, the value of ψ in direction Ω̂ at p. We wish to
compute ψout, the value of ψ in direction Ω̂ at the point at which the ray exits the element.

Let ζ : R→ R3 × S2 be the function defined by

ζ(t) = (p + Ω̂t, Ω̂).

Then

ζ(t) = ((x(t), y(t), z(t)), Ω̂),

where

x(t) = x0 + ut, y(t) = y0 + vt, z(t) = z0 + wt.

Let f = ψ ◦ ζ. Note that f(t) is the value of ψ in direction Ω̂ at the point a distance of t
along the ray from p. If the length of the segment of the ray intersecting the element is l,
then f(l) = ψout.

From the chain rule, we have

(17) f ′(t) =
∂ψ

∂x

∂x

∂t
+
∂ψ

∂y

∂y

∂t
+
∂ψ

∂z

∂z

∂t
= u

∂ψ

∂x
+ v

∂ψ

∂y
+ w

∂ψ

∂z
= [Ω̂ · ~∇ψ](ζ(t)).

11

Within a single element, we assume that the source Q and cross section σ are constant, so
(16) becomes

(18) f ′(t) + σf(t) = Q.

The unique solution to (18) satisfying f(0) = ψin is

(19) f(t) = ψine
−σt +

Q(1− e−σt)
σ

.

Substituting l for t in (19) gives the desired closed-form expression for ψout:

(20) ψout = ψine
−σl +

Q(1− e−σl)
σ

.

We now turn to the question of the computation of φ at all points in the domain. Inte-
grating both sides of (18) from 0 to l, and applying the Fundamental Theorem of Calculus,
we obtain

(21) ψout − ψin + σ

∫ l

0

f(t) dt = Ql.

Hence

(22)

∫ l

0

f(t) dt =
Ql − ψout + ψin

σ
.

By definition,

φ[n] =
1

vol [n]

∫
Vn

φ(~r) dV

=
1

4πvol [n]

∫
Vn

∫
S2

ψ(~r , Ω̂) dΩ̂ dV

=
1

4πvol [n]

∫
S2

∫
Vn

ψ(~r , Ω̂) dV dΩ̂

≈ 1

vol [n]

I∑
i=1

∆Ω̂i

∫
Vn

ψ(~r , Ω̂i) dV.

(23)

Now for any i, we can apply (11) to the function ψ(−, Ω̂i) restricted to Vn and then use (22)
to obtain∫

Vn

ψ(~r , Ω̂i) dV ≈
vol [n]

vol ′[i, n]

Ji∑
j=1

∑
k

1≤k≤Ki,j

ι(i,j,k)=n

∆Si,j

∫ `(i,j,k)

0

ψ(pi,j,k + tΩ̂i, Ω̂i) dt

=
vol [n]

vol ′[i, n]

Ji∑
j=1

∑
k

1≤k≤Ki,j

ι(i,j,k)=n

∆Si,j
Q`(i, j, k)− ψ[i, j, k + 1] + ψ[i, j, k]

σ

(24)

12

Substituting (24) into (23) yields

(25) φ[n] ≈
I∑
i=1

Ji∑
j=1

∑
k

1≤k≤Ki,j

ι(i,j,k)=n

∆Si,j ∆Ω̂i

σ vol ′[i, n]
(Q`(i, j, k)− ψ[i, j, k + 1] + ψ[i, j, k])

This is the formula that is used to update φ′ in line 11 of Figure 7.

7. Conformance

The algorithms keep track of the average scalar flux φg[n] for all elements n, and the
angular flux ψ on the boundary. To be precise, we let ψg[i, j] denote the angular flux at the
point at which trajectory j of angular region i enters the domain being modeled.

The main (“outer”) algorithm is given in Figure 3. The input to this algorithm consists of
all the quantities listed in Figure 2. This algorithm calls two subroutines, downScatterOnly
and upAndDownScatter, described in Figures 4 and 5, respectively. Each of these subroutines
calls inner, given in Figure 6, which solves equation (14) for a fixed energy group g.

An implementation is considered conformant with this specification if it performs the same
computation as the algorithm of Figure 3. By “same computation,” we mean the same if
all arithmetic operations were carried out as (infinite precision) operations on real numbers.
Hence computed results may differ due to the lack of associativity, commutativity, etc., of
floating-point operations.

References

[1] E. E. Lewis and Jr. W. F. Miller. Computational Methods of Neutron Transport. American Nuclear
Society, Inc., La Grange Park, Illinois, USA, 1993.

